

คู่มือการใช้มาน Farm1

- เอาต์พุต Contect 5A/N0 4 ช่อง
- อินพุตดิจิทัล 2 ช่อง
- อินพุตแอนะล็อก 2 ช่อว
- ต่ออุปกรณ์เสริมพ่าน RS485 และ I²C
- ใช้แรงดันไฟฟ้าได้ 5V ถึง 24V
- ใช้ ESP32 เป็นตัวประมวลผล
- เชื่อมต่ออินเตอร์เน็ตผ่าน WiFi
- มีวงารนับเวลา (RTC) ในตัว
- ขนาด 110 x 120 x 40 มิลลิเมตร

Farm1 กล่อมควบคุมฟาร์มระบบ IoT ใช้ไมโครคอนโทรลเลอร์ ESP32 มาพร้อม WiFi และบลูทูร ติดตั้ม บนบอร์ด Farm1 รอมรับการต่ออุปกรณ์ภายนอกพ่านช่อมเอาต์พุต 5A/220V จำนวน 4 ช่อม ต่อ อินพุตดิจิทัล 2 ช่อม อินพุตแอนะล็อก 2 ช่อม และ I/O จำนวน 1 ช่อม มีช่อมต่อ I2C และ RS485 ใช้มาน ได้กับเซ็นเซอร์ทุกประเภท มีวมจรนับเวลา (RTC) มาในตัว มาพร้อมกล่อมติดตั้มบนรามปิกนก

เวอร์ชั่น	รายละเอียดการแก้ไข	ເພຍແພຮ່
1.0	เพิ่มข้อมูลทั่วไปเกี่ยวกับ Farm1 และการเขียนโปรแกรมสั่งงานเบื้องต้น	18/11/2564
1.1	เพิ่มวิธีการใช้มานกับ HandySense	25/11/2564
1.2	เปลี่ยนเซ็นเซอร์หัวข้อ HandySense จาก SHT30 เป็น SHT20	8/12/2564

สารบัญ

สร้าวระบบควบคุมฟาร์ม IoT อย่าวรวดเร็วด้วย HandySense	4
การต่อเซ็นเซอร์เข้ากับบอร์ด Farm1	4
การอัพเดทเฟิร์มแวร์ HandySense	5
การเพิ่มอุปกรณ์เข้าระบบ HandySense	7
ข้อมูลด้านฮาร์ดแวร์และวมาร	13
คุณสมบัติทามไฟฟ้า	13
ตำแหน่มขาต่อใช้มาน	14
∩ารฯ่ายไฟ	14
່	16
ช่อวอินพุตดิจิทัล	18
ช่อวอินพุตแอนะล็อก	19
ช่อม I/O	20
ช่อว I ² C	22
ช่อม RS485	23
วมารนับเวลา (RTC)	24
การเขียนโปรแกรมสั่วมานด้วย Arduino IDE	26
ติดตั้มโปรแกรม Arduino IDE	26
ติดตั้มไดร์เวอร์ FT231X	28
การเพิ่มบอร์ด ESP32 ลมโปรแกรม Arduino IDE	31
การเชื่อมต่อ Farm1 เข้ากับเครื่องคอมพิวเตอร์	33
ทดสอบอัพโหลดโปรแกรมไฟกระพริบ	33
เขียนโปรแกรมสั่วมานช่อมอาต์พุต	36

เขียนโปรแกรมอ่านช่อมอินพุตดิจิทัล	37
เขียนโปรแกรมอ่านช่อวอินพุตแอนะล็อก	38
เขียนโปรแกรมช่อง I/0 อ่านค่าอุณหภูมิจาก DS18B20	40
เขียนโปรแกรมช่อม I²C อ่านค่าอุณหภูมิและความชื้นจาก SHT30	43
เขียนโปรแกรมช่อม RS485 อ่านค่าอุณหภูมิและความชื้นจาก XY-MD02	44
เขียนโปรแกรมตั้มเวลาและอ่านค่าเวลาจากวมจรนับเวลา (RTC)	45
คຳແບະບຳ∩າຣຕົດຕັ້ງ	45
แนวทามการแก้ไขปัญหา	46

สร้างระบบควบคุมฟาร์ม IoT อย่างรวดเร็วด้วย HandySense

HandySense เป็นแพลตฟอร์มระบบควบคุมฟาร์มประกอบด้วยฮาร์ดแวร์และซอฟแวร์ เปิดเป็น Open Source เปิดให้ผู้สนใจนำไปพัฒนาต่อได้ บอร์ด Farm1 สามารถใช้มานร่วมกับระบบ Cloud ขอม HandySense ผ่านเฟิร์มแวร์ที่ปรับแต่มมาโดยเฉพาะ โดยมีข้อกำหนดสำคัญที่ต้อมใช้ฮาร์ดแวร์ เซ็นเซอร์ และการต่อสาย ในรูปแบบที่ผู้พลิตกำหนดเท่านั้น

การต่อเซ็นเซอร์เข้ากับบอร์ด Farm1

อุปกรณ์ด้านอิเล็กทรอนิกส์ที่ำำเป็นต้องใช้ มีดังนี้

1. ບວຣົດ Farm1

3. เซ็นเซอร์วัดความชื้นในดิน

5.อะแดปเตอร์ 12V 1A หัว DC Jack

ARTRONSHOP

2. เซ็นเซอร์วัดอุณหภูมิและความชื้น SHT20

4. เซ็นเซอร์วัดแสม (BH1750)

ต่ออุปกรณ์เข้าด้วยกันดัวนี้

การอัพเดทเฟิร์มแวร์ HandySense

เปิดฟากล่อม Farm1 ออกมา แล้วใช้สาย USB-C เชื่อมต่อเข้ากับคอมพิวเตอร์ตามหัวข้อ <u>การ</u> <u>เชื่อมต่อ Farm1 เข้ากับเครื่อมคอมพิวเตอร์</u> ติดตั้มไดร์เวอร์ตามหัวข้อ <u>ติดตั้มไดร์เวอร์ FT231X</u>

อัพเดทเฟิร์มแวร์ HandySense ให้เป็นเวอร์ชั่นล่าสุด โดยใช้โปรแกรม Google Chome หรือ Microsoft Edge เวอร์ชั่นล่าสุด เข้าไปที่ <u>https://www.farm1.tech/upload</u> กดปุ่ม เชื่อมต่อและอัพโหลด

Farm1.tech

เลือกพอร์ตของบอร์ด แล้วกดปุ่ม เชื่อมต่อ

🔷 อัพเดทเฟิร์มแว	riFarm1 × +
$\leftarrow \ \rightarrow \ {\tt G}$	farm1.tech/upload
(Far	www.farm1.tech ต้องการเชื่อมต่อกับพอร์ตอนุกรม
	CP2102 USB to UART Bridge Controller (COM12) - จับคุมล้า 1 2 ชัง เช่งแต่ง มาเล็ก

รออัพเดทเฟิร์มแวร์ซักครู่

เมื่อเสร็จแล้วจะมีข้อความแจ้ม อัพเดทเสร็จสิ้น (ดัมรูป)

การเพิ่มอุปกรณ์เข้าระบบ HandySense

เข้าไปที่ <u>dashboard.handysense.io</u> จากนั้นสมัครสมาชิก หรือล็อกอินตามขั้นตอน

📚 NETPIE	× +			\sim	-	1		×
\leftrightarrow \rightarrow C	auth.netpie.io/login	07	☆	ABP	*	≡ſ	0	÷
		ense						*
	Welcome To HandySen	se						
	Plaese login to your NETPIE accoun	t.						
	Sername (Email Address)							
	Password							
	Forget your	passwo	ord?					
	SIGN IN							
	Don't have an account yet? Register with	NETPIE	E					

Farm1.tech

้าากนั้นระบบานพาเข้ามาหน้าแรก ซึ่วเป็นหน้าจัดการฟาร์ม กดปุ่ม สร้าวฟาร์ม

HandySense ออกแบบระบบให้ต้องมีฟาร์มก่อน จากนั้นจึงจะเพิ่มอุปกรณ์ลงในฟาร์มได้ ใน 1 ฟาร์ม เพิ่มได้หลายอุปกรณ์

้ในหน้าต่ามสร้ามฟาร์ม ให้ตั้มชื่อฟาร์ม (ห้ามมีเว้นวรรค) ใส่รายละเอียด (เว้นว่ามได้) จากนั้นกดปุ่ม สร้าม

สรางพารม	
ชื่อ	
ฟาร์มทดสอบตึกอาร์ทรอน 🚄	
รายละเอียด	
รายละเอียด	
	3

ระบบจะพาเข้ามาหน้าฟาร์มที่สร้างอัตโนมัติ ให้กดปุ่ม เพิ่มอุปกรณ์ เพื่อเริ่มเพิ่มอุปกรณ์ทันที

HandySense	🔊 Sonthaya Nongnuch \vee
🛖 > ฟาร์มทดสอบตึกอาร์ทรอน 🗸	
ฟาร์มทดสอบตึกอาร์ทรอน 💿 💿	🕸 ตั้งก่า 🕂 เพิ่มอุปกรณ์
	Q AUHTQUINSTU
เพิ่มอุปกรณ์แรกของ คลิกปุ่มด้านส่างเพื่อเพิ่มอุปกรเ	วคุณ _{ณี}
+ เพิ่มอุปกรณ์	

หน้าต่ามสร้ามอุปกรณ์จะแสดมขึ้นมา ในขั้นตอนที่ 1 เป็นแจ้มเตือนให้เชื่อมต่ออุปกรณ์กับเครื่อม คอมพิวเตอร์ ให้กดปุ่ม สร้ามอุปกรณ์

Farm1.tech

เลือกพอร์ตขอวอุปกรณ์ แล้วกดปุ่ม เชื่อมต่อ

HS HandySense	× +	
← → C	a dashboard.handysense.io/p/P123264633068	
Hand	dashboard.handysense.io ต้องการเชื่อมต่อกับพอร์ตอนุกรม	
	CP2102 USB to UART Bridge Controller (COM12)	
+ งาร์		
ฟาร์มเ	0	uaaui
	4	
	(ชื่อมต่อ ยกเล็ก	
	เชื่อมต่ออุปกรณ์เข้ากับเครื่องคอมพิวเตอร์ข	้องคุณไ

ขั้นตอนที่ 2 ตั้งค่าการเชื่อมต่อ WiFi ให้อุปกรณ์ แล้วกดปุ่ม กัดไป

- Farm1 รองรับการเชื่อมต่อ WiFi 2.4GHz เท่านั้น
- ด้า WiFi ไม่มีรหัสผ่าน ช่องรหัสผ่านให้เว้นว่างไว้

ขั้นตอนที่ 3 ตั้วชื่อชุดอุปกรณ์ ใส่รายละเอียด (เว้นว่าวได้) แล้วกดปุ่ม กัดไป

nś	สร้างอุปกรณ์	×
	🕑 ขั้นตอนที่ 1 ———— 🕑 ขั้นตอนที่ 2 ——— 💿 ขั้นตอนที่ 3 —	🗕 🕘 ขั้นตอนที่ 4
		E
L	ตั้งค่ารายละเอียดอุปกรณ์	
Ŀ	ชื่อ	
L	โรงเพาะเห็ด1	
L	รายละเอียด	
L	รายละเอียด	
L		
		3
		ก่อนหน้า ถัดไป

รอประมวลพล ใช้เวลา 2 – 5 วินาที าะแสดงหน้าขั้นตอนที่ 4 สร้างอุปกรณ์เสร็าสิ้น กดปุ่ม เสร็าสิ้น เพื่อปิดหน้าต่างนี้

้าะมีอุปกรณ์เพิ่มเข้ามาในฟาร์มแล้ว กดที่กล่อมอุปกรณ์เพื่อดูรายละเอียด และตั้มค่าต่าม ๆ

							_		~
HS HandySense	× +				~	_	L	I	
\leftrightarrow \rightarrow C \bullet	dashboard.handysense.	io/p/P123264633068		☆	ABP	*	≡J	0	:
	^{อมดักอาร์ทรอน ∨} สอบตึกอาร์ทร	5 0U (1/1) 🔇	& Q คันหาอุปกรณ์	ตั้งค่า	+	เพิ่มอุ	<mark>ปกรณ์</mark> กรอง		
โรงโฟาะไห้ สถานะ : ออนไลน์	i ci	ดกล่าสุด : 17/11/64,19.19							
L	0°С _{әุณнภูม} ิ	0 % ความชั้นอากาศ							
	0 %	O kLux ແສນ							

้าากนั้นรอประมาณ 2 นาที (ค่าาากเซ็นเซอร์ส่วขึ้น HandySense ทุก ๆ 2 นาที) ค่าที่วัดได้าาก เซ็นเซอร์ก็าะแสดวขึ้นมาแล้ว

รงเพาะเห็ด1 🔤		
🕄 ขยายหน้าจอ 🗌 สมุดบั	ເກົກ 🕲 ຕັ້งກ່າ 🕲 ຈຸປກຣານັ	
30.75	າ c ປ ປຣະວັດີ	อัพเดกล่าสุด 17/11/6419: L ดาวน์โหลด
71.03 ความชั้นอ	1% nnn 6000	ू ब ही 🕈
60.93	4000 2000	
-Ö- 0.02 k	17/11/64,1922 17/11/64,1923 17/11/64,1924 17/1 .UX ແລງ ຄວາມຮັບຜາກາກ (%) ອີແລຈ (Kux) ອີຄວາມຮັບຜົບ (%) ອີດູດແກດູນ (*	11/64,19:25 17/11/64; °C)

รายละเอียดการใช้มานระบบ ศึกษาเพิ่มเติมได้จากเอกสาร <u>คู่มือการใช้มาน Web Application:</u>

<u>HandySense ระบบเกษตรแม่นยำ ฟาร์มอัจฉริยะ</u>

ข้อมูลด้านฮาร์ดแวร์และวงาร

คุณสมบัติทามไฟฟ้า

คุณสมบัติ	ต่ำสุด	ปกติ	ສູງສຸດ	
แรมดันไฟฟ้า (DC/AC)	5V	12V	24V	
∩ระแสไฟฟ้า	-	-	1A	
การทน∩ระแสไฟฟ้าช่อมอาต์พุต	-	5A/220V	-	
แรงดันช่องอินพุตดิจิทัล	3V	-	12V	
กระแสช่องอินพุตดิจิทัล	OA (LOW)	-	3mA (HIGH)	
แรงดันช่องอินพุตแอนะล็อก	OV	-	9.9V	
กระแสช่องอินพุตแอนะล็อก	-	-	<1mA	
แรมดันช่อม I/O (D3)	OV	-	3.3V	
กระแสช่อง I/0 ขณะเป็นอินพุต	OA (LOW)	-	1mA (HIGH)	
∩ระแสช่อง I/0 ขณะเป็นเอาต์พุต	OA	-	10mA	
แรวดันช่อว I ² C	-	3.3V	-	
แรมดันช่อม VIN	แรวดันไฟเข้า – 0.6V			
แบตเตอรี่ว <i>ม</i> ารนับเวลา (RTC)	3V (CR2032)			

ตำแหน่วขาต่อใช้วาน

รูปที่ 1 ตำแหน่วขาต่อใช้วาน Farm1

การจ่ายไฟ

รอวรับการจ่ายไฟพ่านช่อว DC / เทอมินอลปลิ๊ก รอวรับไฟเข้าได้ 5V และ 7V กึว 24V (ขึ้นอยู่ กับจิ้มเปอร์) ทั้วกระแสตรว (DC) และกระแสสลับ (AC) กระแสไฟฟ้าที่ต้อวการต่ำสุด 1A

จั้มเปอร VIN ใช้เลือกระดับแรมดันไฟเข้า โดยหากจั้มที่ 5V ต้อมจ่ายไฟเข้า 5V เท่านั้น (DC) หาก เลือกเป็น 7-24V เลือกจ่ายไฟด้วยหม้อแปลม แบตเตอรี่ โซล่าเซลล์ หรือแหล่มจ่ายไฟอื่นที่อยู่ในช่วม 7V กึม 24V ได้ รอมรับทั้มไฟฟ้ากระแสตรมและกระแสสลับ

หลอดแอลอีดี POWER ติดสว่ามเป็นสีเขียวเมื่อได้รับไฟฟ้าจากแหล่งจ่ายไฟ

รูปที่ 2 วมารส่วนภาคว่ายไฟ

ตัวอย่ามการจ่ายไฟให้บอร์ด Farm1 ด้วยสวิทชิ่มเพาเวอร์ซัพพลาย 12V แสดมดัมรูปที่ 3

รูปที่ 3 การจ่ายไฟให้บอร์ด Farm1 ด้วยสวิทชิ่มเพาเวอร์ชัพพลาย 12V

ตัวอย่ามการจ่ายไฟให้บอร์ด Farm1 ด้วยอะแดปเตอร์ 9V แสดมดัมรูปที่ 4

รูปที่ 4 การจ่ายไฟให้บอร์ด Farm1 ด้วยอะแดปเตอร์ 9V

ช่อมเอาต์พุตประกอบด้วย 01 กึม 04 เป็นเอาต์พุตแบบหน้าคอนเทครีเลย์ N0 ทนกระแสได้สูมสุด 5A ที่ 220V มีหลอดแอลอีดีแสดมสถานการณ์ทำมาน โดยจะติดสว่ามเป็นสีส้มเมื่อหน้าคอนเทคต่อ (รีเลย์ทำมาน)

รูปที่ 5 ส่วนประกอบภาคเอาต์พุต

้ตัวอย่ามการต่อช่อมอาต์พุตเข้ากับหลอดไฟและโซลินอยด์วาล์ว แสดมดัมรูปที่ 6

รูปที่ 6 การต่อช่อมอาต์พุตเข้ากับหลอดไฟและโซลินอยด์วาล์ว

การต่อช่อมอาต์พุตเข้ากับอุปกรณ์กำลังสูง ต้องต่อพ่านแมกเนติก (Magnetic Contactor) เท่านั้น

รีเลย์ของช่องเอาต์พุตต่อเข้ากับ ESP32 พ่านขา 25, 14, 12 และ 13 ตามลำดับ บล็อกไดอะแกรมส่วน เอาต์พุตดิจิทัลแสดงดังรูปที่ 7

รูปที่ 7 บล็อกไดอะแกรมส่วนเอาต์พุตดิจิทัล

ช่อวอินพุตดิจิทัล

ช่องอินพุตดิจิทัลประกอบด้วย D1 และ D2 รองรับไฟเข้าได้ 3V ถึง 12V คั่นระหว่างสัญญาณเข้า กับ ESP32 ด้วยออปโต้คัปเปอร์ มีหลอดแอลอีดีสีส้ม ติดเมื่อได้รับลอจิก 1

รูปที่ 8 ส่วนประกอบภาคอินพุตดิจิทัล

ตัวอย่างการต่อสวิตช์ และลูกลอยเข้ากับช่องอินพุต แสดงดังรูปที่ 9

รูปที่ 9 การต่อสวิตช์ และลูกลอยเข้ากับช่องอินพุต

ช่องอินพุตดิจิทัล เชื่อมต่อกับ ESP32 ผ่านออปโต้คอปเปอร์ที่ขา 34, 35 ตามลำดับ ทำงานแบบ Active LOW เมื่อมีสัญญาณอินพุตเข้ามา สัญญาณเข้า ESP32 จะเป็น LOW และหากไม่มีสัญญาณอินพุตเข้า มา สัญญาณเข้า ESP32 จะเป็น HIGH บล็อกไดอะแกรมส่วนอินพุตดิจิทัล แสดงดังรูปที่ 10

รูปที่ 10 บล็อกไดอะแกรมส่วนอินพุตดิจิทัล

ช่อวอินพุตแอนะล็อก

ช่องอินพุตแอนะล็อกประกอบด้วย A1 และ A2 รองรับไฟเข้าได้ OV กึง 9.9V ใช้ต่อเข้ากับเซ็นเซอร์ ที่ให้เอาต์พุตเป็นแรงดันไฟฟ้า เช่น เซ็นเซอร์วัดความชื้นในดิน, เซ็นเซอร์วัดระดับน้ำ, เซ็นเซอร์วัดความขุ่น ของน้ำ, เซ็นเซอร์วัดความเป็นกรด-ด่าง (PH) เป็นต้น

รูปที่ 11 ส่วนประกอบภาคอินพุตแอนะล็อก

ตัวอย่างการต่อเซ็นเซอร์วัดความชื้นในดินเข้ากับช่องอินพุตแอนะล็อก แสดงดังรูปที่ 12

รูปที่ 12 การต่อเซ็นเซอร์วัดความชื้นในดินเข้ากับช่อมอินพุตแอนะล็อก

อินพุตแอนะล็อกพ่านววารบัพเฟอร์าากนั้นเข้าววารแบ่วแรวดันเพื่อให้แรวดันไม่เกิน 3.3V ทำให้ ESP32 สามารกรับแรวดันสูวได้ ช่อวแอนะล็อกต่อกับ ESP32 ขา 36, 39 ตามลำดับ บล็อกไดอะแกรมส่วน อินพุตแอนะล็อก แสดวดัวรูปที่ 12

รูปที่ 13 บล็อกไดอะแกรมส่วนอินพุตแอนะล็อก

່ ช່ວງ Ⅰ/᠐

ช่อง I/O คือ D3 รองรับแรงดันไฟเข้าสูงสุด 3.3V ใช้ต่อกับกับเซ็นเซอร์/อุปกรณ์ภายนอกสื่อสาร ด้วยสายเส้นเดียว เช่น เซ็นเซอร์วัดอุณหภูมิและความชื้น DHT11/DHT22, เซ็นเซอร์วัดอุณหภูมิแบบกัน น้ำ DS18B20, หลอดแอลอีดี RGB เบอร์ WS2812, เซอร์โวมอเตอร์ เป็นต้น

รูปที่ 14 ส่วนประกอบภาค I/0

ตัวอย่างการต่อเซ็นเซอร์วัดอุณหภูมิหัวกันน้ำ DS18B20 เข้ากับช่อง I/O แสดงดังรูปที่ 15

DS18B20 ทำงานแบบ 1-wire ตามข้อกำหนด ต้องต่อตัวต้านทาน Pull-up ด้วย

รูปที่ 15 การต่อเซ็นเซอร์วัดอุณหภูมิหัวกันน้ำ DS18B20 เข้ากับช่อม I/O

ช่อง I/0 ต่อตรงกับ ESP32 ขา 26 คั่นด้วยตัวต้านทาน 100 เพื่อป้องกันกระแสไหลเกิน พร้อมตัว ต้านทาน 4.7 k ไม่น Pull-up บล็อกไดอะแกรมส่วน I/0 แสดงดังรูปที่ 16

รูปที่ 16 บล็อกไดอะแกรมส่วน I/0

່<mark>ช</mark>່ວງ l²C

ช่อว I²C ประกอบด้วย SCL และ SDA ใช้ต่อกับอุปกรณ์ I²C เช่น เซ็นเซอร์วัดอุณหภูมิและ ความชื้น SHT30, เซ็นเซอร์วัดความกดอากาศ BMP280, เซ็นเซอร์แสว BH1750 เป็นต้น ใช้วานได้กับ อุปกรณ์ที่ใช้แรวดันไฟฟ้า 3.3V มีหลอดแอลอีดีกระพรับบอกสถานะรับ-ส่วข้อมูล

รูปที่ 17 ส่วนประกอบภาค I²C

การต่อกับเซ็นเซอร์ จำเป็นจะต้อมต่อขา SCL และ SDA ให้ถูกต้อม ตัวอย่ามการต่อเซ็นเซอร์วัดอุณหภูมิ และความชื้น SHT20 แสดมดัมรูปที่ 18

รูปที่ 18 การต่อเซ็นเซอร์วัดอุณหภูมิและความชื้น SHT30 เข้ากับช่อม I²C

ช่อง I2C ต่อตรงกับ ESP32 ขา 22 (SCL), 21 (SDA) โดยมีตัวต้านทาน Pull-up 10k□ ต่อไว้ให้แล้ว บล็อกไดอะแกรมส่วน I²C แสดงดังรูปที่ 19

รูปที่ 19 บล็อกไดอะแกรมส่วน I2C

ช่อว RS485

ช่อง RS485 ประกอบด้วย A+ และ B- ใช้ต่อกับเซ็นเซอร์ RS485 หรือ Modbus RTU เช่น เซ็นเซอร์วัดความชื้นในดิน เซ็นเซอร์อุณหภูมิ เซ็นเซอร์วัดระดับน้ำฝน เซ็นเซอร์วัดความเร็วลม เป็นต้น ช่อง RS485 บนบอร์ดมี Resistor Termination ค่าความต้านทาน 120 มาให้แล้ว พร้อม TVS ป้องกันแรงดันไฟฟ้าในบัสสูงเกินกำหนด

รูปที่ 20 ส่วนประกอบภาค RS485

้ตัวอย่ามการต่อเซ็นเซอร์วัดอุณหภูมิและความชื้น XY-MD02 เข้ากับช่อม RS485 แสดมดัมรูปที่ 21

รูปที่ 21 การต่อเซ็นเซอร์วัดอุณหภูมิและความชื้น XY-MD02 เข้ากับ Fame1

ช่อว RS485 ต่อกับ ESP32 พ่านววารแปลว RS485 เป็น UART เข้าที่ขา 4 (RX), 15 (TX) และ 2 (DIR) บล็อกไดอะแกรมส่วน RS485 แสดวดัวรูปที่ 22

รูปที่ 22 บล็อกไดอะแกรมส่วน RS485

วมารนับเวลา (RTC)

วมารนับเวลาต่อตรมกับ ESP32 ผ่านช่อม I²C ใช้นับเวลาเมื่อไม่มีอินเตอร์เน็ต หรือเมื่อไม่มีไฟเลี้ยม ใช้ประกอบการเขียนโปรแกรมที่ต้อมการให้ทำมานตามเวลา เช่น ส่มค่าที่วัดได้ในฟาร์มขึ้นระบบคลาวด์ตาม เวลา เปิด-ปิดไฟตามเวลา เปิด-ปิดปั้มน้ำตามเวลา เป็นต้น

วมารนับเวลา (RTC) ำาเป็นต้อมใช้ก่าน CR2O32 า่ายไฟเลี้ยมให้วมาร โดยไฟาากก่านาะถูกใช้เมื่อ ไม่มีแรมดันาากแหล่มา่ายไฟา่ายเข้ามา ทำให้วมารส่วนนับเวลา (RTC) ยัมมีไฟเลี้ยมอยู่ตลอด ทำให้วมารยัม

้ทำมาน นับเวลาอยู่เรื่อย ๆ จดจำค่าเวลาได้ และพร้อมให้เรียกใช้ค่าเวลาเมื่อวมจรส่วนประมวลพลกลับมา ทำมานอีกครั้ม

รูปที่ 23 ส่วนประกอบวมารนับเวลา (RTC)

บล็อกไดอะแกรมส่วนวมารนับเวลา (RTC) แสดมดัมรูปที่ 24

รูปที่ 24 บล็อกไดอะแกรมส่วนวมารนับเวลา (RTC)

การเขียนโปรแกรมสั่วงานด้วย Arduino IDE

Farm1 ใช้ไมโครคอนโทรลเลอร์ ESP32 ในการประมวลพล รองรับเครื่องมือพัฒนาทั้ง ESP-IDF และ Arduino IDE ในเอกสารนี้จะแนะนำตัวอย่างการเขียนโปรแกรมแต่ละส่วนด้วย Arduino IDE

ติดตั้มโปรแกรม Arduino IDE

โปรแกรม Arduino IDE เป็นหนึ่วในเครื่อวมือที่ใช้พัฒนาโปรแกรมให้ Farm1 ซึ่วประกอบไปด้วย Text Editor ใช้แก้ไขโค้ดโปรแกรม, Compiler และ Uploader

ขั้นตอนการติดตั้งโปรแกรม Arduino IDE มีดังนี้

เข้าไปที่ <u>http://www.arduino.cc/en/Main/Software</u> เลือก OS ให้ตรงกับเครื่องคอมพิวเตอร์

กดปุ่ม JUST DOWNLOAD เพื่อเริ่มดาว์โหลดโปรแกรม

รอานกว่าการดาว์โหลดาะเสร็าสิ้น แล้วาึมทำขั้นตอนกัดไป

้เมื่อดาว์โหลดเสร็จแล้วให้เปิดไฟล์ติดตั้งขึ้นมา แล้วกดปุ่ม I Agree เพื่อยืนยันยอมรับเมื่อนไขการใช้งาน

โปรแกรม

คลิกปุ่ม Next > เพื่อติดตั้งทั้งหมด

เลือกโฟลเดอร์ติดตั้งโปรแกรม หากไม่ต้องการแก้ไขคลิกปุ่ม Install

รอานกว่าโปรแกรมาะติดตั้มเสร็าสิ้น

0	Arduino Setup: Installing	= 🗆 ×
Extrac	t: dpinst-x86.exe	
Show deta	is	
Cancel	Nullsoft Install System v2.46	Back Close

เมื่อขึ้นคำว่า Completed ให้กดปุ่ม Close เพื่อปิดหน้าต่ามติดตั้มโปรแกรมได้เลย

หน้าเดสท็อปก็จะมีไอค่อนโปรแกรม Arduino ขึ้นมาแล้ว

ติดตั้มไดร์เวอร์ FT231X

บอร์ด IOXESP32+ เป็นบอร์ดที่ใช้พัฒนา ESP32 เสียบอยู่บน Farm1 มีววารอัพโหลดโปรแกรมบน บอร์ดผ่านชิปแปลว USB เป็น UART เบอร์ FT231X ซึ่วำาเป็นต้อวติดตั้วไดร์เวอร์ก่อนาำวาะอัพโหลด โปรแกรมเข้าได้

เข้าไปที่ <u>https://ftdichip.com/drivers/vcp-drivers/</u> กดดาวน์โหลดไฟล์ตาม 0S ขอมเครื่อม

คอมพิวเตอร์

าะได้ไฟล์มา CDM vxxxxx WHQL Certified.zip ให้แตกไฟล์ด้วยโปรแกรม WinRAR, 7-Zip

เข้าไปในโฟลเดอร์ที่แตกไฟล์มา แล้วคลิกขวาที่ไฟล์ ftdiport.inf กด Install

้ จากนั้นหน้าต่ามให้ยืนยันจะแสดมขึ้นมา ให้กดปุ่ม Yes หากติดตั้งสำเร็จ จะมีข้อความแจ้ง (ดัวรูป)

เปิด Device Manager ขึ้นมา โดยพิมพ์ในช่องค้นหา

้เสียบสาย USB ตามหัวข้อ <u>การเชื่อมต่อ Farm1 เข้ากับเครื่อมคอมพิวเตอร์</u> จากนั้นสัมเกตในหน้าต่าม

Device Manager าะต้อมมีหัวข้อ Ports และมี USB Serial Port ขึ้น เป็นอันเสร็าสิ้นการติดตั้มไดร์เวอร์

Farm1.tech

การเพิ่มบอร์ด ESP32 ลงโปรแกรม Arduino IDE

โปรแกรม Arduino IDE เดิมรอวรับการเขียนโปรแกรมสั่ววานเฉพาะบอร์ดที่พลิตโดย Arduino เท่านั้น หากต้อวการใช้เขียนโปรแกรมให้ ESP32 ำาเป็นต้อวติดตั้วบอร์ด ESP32 เพิ่ม โดยติดตั้ว Arduino core for the ESP32

เปิดโปรแกรม ArdvinoIDE ขึ้นมา โดยดับเบิลคลิกที่ไอค่อน Ardvino บนหน้าเดสท็อป กด File เลือก

Preferences

ในช่อง Additional Boards Manager URLs ใส่

https: / / raw. githubusercontent. com/ espressif/ arduino- esp32/ ghpages/package_esp32_index.json

แล้วกดปุ่ม OK (ในรูปเป็นลิ้มก่า ให้ใส่ลิ้มใหม่ด้านบน)

าา∩นั้น∩ถ Tools > Board เลือ∩ Boards Manager...

าา∩นั้น∩ด Type เลือ∩ Contributed

เลื่อนหา esp32 แล้วกดปุ่ม Install

😨 Boards Manager		×
Type Contributed V Filter your search		
		^
esp32 by Espressif Systems Boards included in this package: ESP32 Dev Module, WEMOS LoLin32, WEMOS D1 MINI ESP32. More Info	1.0.4 ~ Install	
		~
Installing tiols (1/3)		Cancel

เมื่อติดตั้มเสร็จแล้ว จะแสดมคำว่า INSTALLED กดปุ่ม Close เพื่อปิดหน้าต่าม เป็นอันเสร็จสิ้นการเพิ่ม บอร์ด ESP32 ลมโปรแกรม Arduino IDE

การเชื่อมต่อ Farm1 เข้ากับเครื่องคอมพิวเตอร์

ใช้สาย USB-C เสียบช่อว USB-C บนบอร์ด IOXESP32+ ปลายอีกด้านขอวสายเสียบเข้ากับ เครื่อวคอมพิวเตอร์

สาย USB-C หาซื้อได้ทั่วไปตามร้านขายอุปกรณ์ IT, ร้านโทรศัพท์, ร้านสะดวกซื้อ, ห้างสรรพสินค้า

รูปที่ 24 การเชื่อมต่อ Farm1 เข้ากับเครื่องคอมพิวเตอร์ด้วยสาย USB-C

ทดสอบอัพโหลดโปรแกรมไฟกระพริบ

ที่โปรแ∩รม Arduino IDE ∩ดไปที่ File > Examples > 01.Basics เลือ∩ Blink

Farm1.tech

แก้ไข LED_BUILIN ให้เป็น 25 (ขา 01)

Blink Arduino 1.8.13	🐵 Blink Arduino 1.8.13 — 🗆 🗙
File Edit Sketch Tools Help	File Edit Sketch Tools Help
Blink	Blink§
23 */	23 */
24	24
25 // the setup function runs once when you press	25 // the setup function runs once when you press
26 void setup() {	26 void setup()
27 // initialize digital pin LED_BUILTIN as an	27 // initianze digital pin LED_BUILTIN as an
28 pinMode (LED_BUILTIN, OUTPUT);	28 pinMode(25, OUTPUT);
29 }	29 }
30	
31 // the loop function runs over and over again	31 // the loop function runs over and over again
32 void loop() {	32 void loop() {
<pre>33 digitalWrite(LED_BUILTIN, HIGH); // turn t</pre>	33 digitalWrite(25, HGH); // turn the LED on
34 delay(1000); // wait f	34 delay(1000); 💋 // wait f
35 digitalWrite(LED_BUILTIN, LOW); // turn t	35 digitalWrite(25, LOW); // turn the LED of
36 delay(1000); // wait f	36 delay(1000); // wait f
37 }	37 }
< >>	< >>
ESP32 Wrover Module, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), QIO, 80MHz, 921600, Verbose on COM12	ESP32 Wrover Module, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), QIO, 80MHz, 921600, Verbose on COM1 2

เลือกบอร์ดให้กูกต้อม โดยกด Tool > Board > ESP32 Arduino เลือกบอร์ด ESP32 Dev Module

เลือกพอร์ตให้ถูกต้อง โดยกดไปที่ Tool > Port เลือก COM... ที่มีให้เลือก

 หากไม่ขึ้นพอร์ตให้เลือก ให้ตรวจสอบสาย USB-C ว่าเสียบแน่นแล้วหรือยัง โดยสังเกตบอร์ด IOXESP32+ ไฟ PWR สีเขียวต้องติดสว่าง หากคาดว่าบอร์ดทำงานปกติ ให้ตรวจสอบการ<u>ติดตั้งไดร์</u> <u>เวอร์ FT231X</u>อีกครั้ง

ึกดปุ่ม 💽 เพื่อคอมไพล์และอัพโหลดโปรแกรมลวบอร์ด (เวลาที่ใช้ในการคอมไพล์และอัพโหลดอาจกึว 2

นาที หากไม่มีข้อความแจ้ง Error หรือ Done uploading ให้รอก่อน)

หากคอมไพล์และอัพโหลดโปรแกรมสำเร็จ จะมีข้อความ Done uploading แสดงขึ้นมา (ดังรูป)

้พลลัพธ์ที่ได้ ไฟที่ช่อว 01 จะ∩ระพริบทุ∩ ๆ 1 วินาที พร้อมมีเสียวรีเลย์ตัด-ต่อ

เขียนโปรแกรมสั่วมานช่อมเอาต์พุต

ใช้คำสั่ว pinMode() และ digitalWrite() ในการเขียนโปรแกรมสั่ววานช่อวเอาต์พุต

้ทำหนดแทนที่ 01_PIN, ..., 04_PIN ด้วยหมายเลขขาที่ต่อกับ ESP32 ดัวนี้

```
1. #define O1_PIN 25
2. #define O2_PIN 14
```

- 3. #define 03_PIN 12
- 4. #define O4_PIN 13

ใน void setup() ใช้สั่ว pinMode() กำหนดขา 01 กึว 04 เป็นเอาต์พุต

1. void setupo{
2. pinMode(O1_PIN, OUTPUT);
3. pinMode(O2_PIN, OUTPUT);
4. pinMode(O3_PIN, OUTPUT);
5. pinMode(O4_PIN, OUTPUT);
6. }

ู้ใน void loop() ใช้คำสั่ว digitalWrite() สั่วให้รีเลย์ช่อว 01 ตัด-ต่อทุ∩ ๆ 1 นาที

```
    void loopo {
    digitalWrite(O1_PIN, HIGH);
    delay(1000);
    digitalWrite(O1_PIN, LOW);
    delay(1000);
    }
```

ได้โค้ดโปรแกรมที่สมบูรณ์ดัวนี้

```
1. #define O1 PIN 25
2. #define 02 PIN 14
3. #define O3 PIN 12
4. #define O4 PIN 13
5.
6. void setup() {
7. pinMode(O1_PIN, OUTPUT);
8. pinMode(O2 PIN, OUTPUT);
9. pinMode(O3_PIN, OUTPUT);
10. pinMode(O4_PIN, OUTPUT);
11. }
12.
13. void loop0{
14. digitalWrite(O1 PIN, HIGH);
15. delay(1000);
16. digitalWrite(01_PIN, LOW);
17. delay(1000);
18. }
```


อัพโหลดโปรแกรมลวบอร์ด าะได้ยินเสียวรีเลย์ตัด-ต่อ และไฟช่อวเอาต์พุตติด-ดับ ทุก ๆ 2 วินาที

เขียนโปรแกรมอ่านช่องอินพุตดิจิทัล

ใช้คำสั่ง pinMode() และ digitalRead() ในการอ่านค่าช่องอินพุตดิจิทัล

้ กำหนดแทนที่ 01_PIN, ..., 04_PIN และ D1_PIN, D2_PIN ด้วยหมายเลขขาที่ต่อกับ ESP32 ดังนี้

```
    #define O1_PIN 25
    #define O2_PIN 14
    #define O3_PIN 12
    #define O4_PIN 13
    6. #define D1_PIN 34
    7. #define D2_PIN 34
```

ใน void setup() ใช้สั่ว pinMode() กำหนดขา 01 กึว 04 เป็นเอาต์พุต และกำหนดขา D1 และ D4 เป็น อินพุตดิจิทัล

1. void setup){
2. pinMode(O1_PIN, OUTPUT);
3. pinMode(O2_PIN, OUTPUT);
4. pinMode(O3_PIN, OUTPUT);
5. pinMode(O4_PIN, OUTPUT);
6.
7. pinMode(D1_PIN, INPUT);
8. pinMode(D2_PIN, INPUT);
9. }

ใน void loop() ใช้คำสั่ว digitalRead() อ่านค่าเก็บลงตัวแปร value ชนิด int

1. int value = digitalRead(D1_PIN);

ใช้คำสั่ม if ตรวาสอบค่าในตัวแปร value หากได้ 0 ให้สั่มรีเลย์ช่อม 01 ทำมาน ใช้คำสั่ม else หากเมื่อนไข

ใน if ไม่เป็นจริว ให้รีเลย์ช่อว 01 หยุดทำวาน

```
2. if(value == 0) {
3. digitalWrite(O1_PIN, HIGH);
4. } else {
5. digitalWrite(O1_PIN, LOW);
6. }
```


ได้โค้ดโปรแกรมที่สมบูรณ์ดัวนี้ (ดาวน์โหลดโค้ดโปรแกรมได้ที่)

```
1. #define O1 PIN 25
2. #define O2 PIN 14
3. #define O3 PIN 12
4. #define 04 PIN 13
5.
6. #define D1 PIN 34
7. #define D2 PIN 34
8.
9. void setup0 {
10. pinMode(O1_PIN, OUTPUT);
11. pinMode(O2_PIN, OUTPUT);
12. pinMode(O3 PIN, OUTPUT);
13. pinMode(04 PIN, OUTPUT);
14.
15. pinMode(D1_PIN, INPUT);
16. pinMode(D2_PIN, INPUT);
17.}
18.
19. void loop() {
20. int value = digitalRead(D1_PIN);
21. if (value == 0) {
       digitalWrite(01_PIN, HIGH);
22.
23.
     } else {
24. digitalWrite(O1_PIN, LOW);
25. }
26. delay(10);
27.}
```

อัพโหลดโปรแกรมลงบอร์ด ที่ช่อง D1 ด้านนึงต่อเข้ากับ GND อีกด้านใช้สายลอย (ดังรูปที่ ...) แตะกับ 5V หรือ VIN สังเกตไฟสีส้มของช่อง D1 จะติดเมื่อแตะโดน และจะดับเมื่อนำออก ส่วนรีเลย์ช่อง 01 จะ ทำงานเมื่อแตะสายไฟ และหยุดทำงานเมื่อนำสายไฟออก

เขียนโปรแกรมอ่านช่องอินพุตแอนะล็อก

ใช้คำสั่ม analogRead() อ่านค่าช่อมอินพุตแอนะล็อก ได้ค่า 0 กึม 4095 เมื่อ 4095 เทียบได้กับแรมดัน 9.9V (ตามวมารในหัวข้อ <u>ช่อมอินพุตแอนะล็อก</u>)

้ทำหนดแทนที่ A1 และ A2 ด้วย 36 และ 39 ตามลำดับ

^{1. #}define A1_PIN 36

^{2. #}define A2_PIN 39

้ใน void loop() ใช้คำสั่ว analogRead() อ่านค่าแอนะล็อกจาก A0 แล้วนำค่าที่ได้เทียบัญญัติไตรยาวค์ เพื่อแปลวเป็นแรวดัน เก็บลวตัวแปร volt ชนิด float

```
1. float volt = analogRead(A1_PIN) / 4095.0 * 9.9;
```

ใช้คำสั่ว Serial.println() ให้แสดงค่าในตัวแปร volt ออ∩มาทาง Serial Monitor

```
2. Serial.println(volt);
```

ได้โค้ดโปรแกรมที่สมบูรณ์ดัวนี้

```
3. #define A1_PIN 36
4. #define A2_PIN 39
5.
6. void setup0 {
7. Serial.begin(115200);
8. }
9.
10. void loop0 {
11. float volt=analogRead(A1_PIN)/4095.0*9.9;
12. Serial.println(volt);
13. delay(10);
14. }
```

อัพโหลดโค้ดโปรแกรมลวบอร์ด เปิด Serial Monitor โดยกด 🖻 ตั้ว band เป็น 115200 แล้วทดลอว วั้มระหว่าว A1 กับ 5V วากนั้นทดสอบวั้มระหว่าว A1 กับ 3.3V สัวเกตพลที่ได้ใน Serial Monitor วะ ต่าวกัน

วงารส่วนแอนะล็อกใช้ไฟจาก VIN จึงจำเป็นต้องต่อไฟเข้า VIN เพื่อให้วงารแอนะล็อกทำงานได้ถูกต้อง

COM12	© COM12
1	
2.98	4./1
2.97	4.65
2.97	4.84
2.98	4.82
2.98	4.80
2.98	4.64
2.97	4.63
2.96	4.68
2.96	4.65
2.97	4.68
2.96	4.80
2.98	4.76
2.98	4.73
2.96	4.64
Autoscroll Show timestamp	Autoscroll Show timestamp

เขียนโปรแกรมช่อง I/O อ่านค่าอุณหภูมิจาก DS18B2O

ต่อววารตามหัวข้อ <u>ช่อว I/O</u> ติดตั้มไลบารี่ OneWire ตามขั้นตอนดัวนี้

เข้าไปที่ <u>https://github.com/PaulStoffregen/OneWire</u> ∩ด Code แล้ว∩ด Download ZIP

าะได้ไฟล์ OneWire-master.zip มา

ที่โปรแ∩รม Arduino IDE ∩ถ Sketch > Include Library เลือ∩ Add .ZIP Library

เลือกไฟล์ OneWire-master.zip ที่ถาวน์โหลดมา กดปุ่ม Open

Farm1.tech

หากติดตั้งสำเร็จ จะมีข้อความ Library added ขึ้น (ดังรูป)

ติดตั้มไลบารี่ DallasTemperature ด้วย Library Manager ตามขั้นตอนดัมนี้

∩ด Sketch > Include Library เลือ∩ Manage Libraries

หน้าต่าง Library Manager จะแสดงขึ้นมา ให้ค้นหา DallasTemperature แล้วเลือกกดปุ่ม Install

ไลบารี่ by Miles Burton

 Library Manager 	×
Type All V Topic All V DallasTemperature	
DallasTemperature 3 by Miles Burton, Tim Newsome, Guil Barros, Rob Tillaart Arduin Library for Dallas Temperature ICs Supports DS18B20, DS18S20, DS1822, DS1820 More 0 2 Version 3.9.0 ~	Install
DSTB820Events by Thar Yakimush Arduino temperature changed events for DS18B20 and other DallasTemperature compatible sensors Arduino temperature chang for DS18B20 and other DallasTemperature compatible sensors More info	ed events
	~
	Close

้เมื่อติดตั้มเสร็จแล้ว จะมีข้อความ INSTALLED แสดม (ดัมรูป) กดปุ่ม Close เพื่อปิดได้เลย

ดาวน์โหลดโปรแกรมตัวอย่างจาก <u>https://bit.ly/3HkpJx5</u> อัพโหลดโปรแกรมลงบอร์ด แล้วเปิด

Serial Monitor ขึ้นมา โดยกด 🖻

(Farm1).tech

เลือก 115200 band หากต่อวงารถูกต้อง เซ็นเซอร์ทำงานได้ าะมีอุณหภูมิในหน่วยองศาเซลเซียส และ

องศาฟาเรนไฮต์แสดงขึ้นมา

เขียนโปรแกรมช่อง I²C อ่านค่าอุณหภูมิและความชื้นจาก SHT30

ต่อวมารตามหัวข้อ <u>ช่อม I2C</u> ติดตั้มไลบารี่ ClosedCube SHT31D ด้วย Library Manager าากนั้นเปิด โค้ดโปรแกรมตัวอย่าม periodicmode ขึ้นมา

อัพโหลดโปรแกรมลวบอร์ด เปิด Serial Monitor ขึ้นมา ปรับ band เป็น 9600 ค่าอุณหภูมิและ ความชื้นที่ SHT30 วัดได้าะแสดวขึ้นมา

หากมีข้อความ Periodic Mode: [ERROR] ให้แก้ไขหมายเลขของอุปกรณ์บรรทัดที่ 32 จาก 0x44
 เป็น 0x45 อัพโหลดโปรแกรมแล้วดูพลอีกครั้ง

💿 СОМ12			-	
				Send
Perioaic Moa	e: T=31.210,	кп=00.0/3		^
Periodic Mod	le: T=31.20C,	RH=68.86%		
Periodic Mod	le: T=31.21C,	RH=68.87%		
Periodic Mod	le: T=31.21C,	RH=68.86%		
Periodic Mod	le: T=31.21C,	RH=68.82%		
Periodic Mod	le: T=31.22C,	RH=68.84%		
Periodic Mod	le: T=31.22C,	RH=68.90%		
Periodic Mod	le: T=31.22C,	RH=68.85%		
Periodic Mod	le: T=31.21C,	RH=68.86%		
Periodic Mod	le: T=31.20C,	RH=68.86%		
Periodic Mod	le: T=31.22C,	RH=68.83%		
Periodic Mod	le: T=31.21C,	RH=68.88%	9600	
Periodic Mod	le: T=31.21C,	RH=68.81%		
Periodic Mod	le: T=31.22C,	RH=68.86%		
				~
Autoscroll Show timestamp		Both NL & CR	✓ 9600 baud	Clear output

เขียนโปรแกรมช่อง RS485 อ่านค่าอุณหภูมิและความชื้นจาก XY-MD02

ต่อวมารตามหัวข้อ <u>ช่อม RS485</u> ติดตั้มไลบารี่ ModbusMaster ด้วย Library Manager จากนั้นดาวน์ โหลดโค้ดตัวอย่ามจาก <u>https://bit.ly/3ccUxRV</u> แก้ไขหมายเลขอุปกรณ์ (Device ID) ขอม XY-MD02 ให้ถูกต้อม (ค่าจากโรมมาน เป็น ID: 1) อัพโหลดโปรแกรมลมบอร์ด

เปิด Serial Monitor ขึ้นมา ปรับ Band เป็น 115200 หากต่อวงารถูกต้อง เซ็นเซอร์ทำงานได้ ค่า อุณหภูมิและความชื้นที่วัดได้าะแสดงขึ้นมา

© COM12		
Temp:	31.2	*C
Humi:	15.1	RH
Temp:	31.2	*C
Humi:	15.1	RH
Temp:	31.2	*C
Humi:	15.1	RH
Temp:	31.2	*C
Humi:	15.1	RH

Farm1.tech

เขียนโปรแกรมตั้มเวลาและอ่านค่าเวลาจากวมจรนับเวลา (RTC)

ติดตั้มไลบารี่ Artron DS1338 ด้วย Library Manager เปิดตัวอย่ามโค้ดจากเมนู File > Examples > Artron DS1338 > DS1338_set_aet_datetime

อัพโหลดโปรแกรมตัวอย่างลงบอร์ด เปิด Serial Monitor ปรับ 115200 band พลที่ได้คือ เวลาใน RTC

้าะถูกตั้ม และแสดมเวลาที่นับขึ้นเรื่อย ๆ บน Serial Monitor

คำแนะนำการติดตั้ง

อุปกรณ์รอวรับการติดตั้วบนราวปีกนก ไม่กันน้ำ การใช้วานจริวจึวควรติดตั้วบนราวปีกนกในกล่อว กันน้ำ รู้ร้อยสายใฟที่เข้ากล่อวควรใช้คอนดนคเตอร์แบบกันน้ำ หรือใช้เคเบิ้ลแกลนด์ เพื่อป้อวกันน้ำเข้า ภายในกล่อว ควรรักษาอุณหภูมิให้ไม่เกิน 80 อวศาเซลเซียส ซึ่วอาจทำให้อุปกรณ์อิเล็กทรอนิกส์ เสียหาย การเก็บรักษาควรเก็บในที่แห้ว ไม่โดนแดดโดยตรว

พาวเวอร์ซัพพลายควรเลือกใช้รุ่นที่สามารถทนไฟกระชากได้ มีระบบตัดไฟเมื่อกระแสเกิน มี อุปกรณ์ป้อมกันฟ้าพ่า โดยอาจสัมเกตและเลือกใช้พาวเวอร์ซัพพลายที่มีสัญลักษณ์ CE หรือ มอก. พร้อมติดตั้มเบรกเกอร์เพื่อใช้ปิดอุปกรณ์เมื่อต้อมบำรุมรักษา

แนวทางการแก้ไขปัญหา

ปัญหา	แนวทามแก้ไข	
ປັດງหາເວາຕ໌ພຸຕ		
ໃช้คำสั่ว digitalWrite() ແຕ່ຣົເລຍົ ໄມ່ກຳວາน ໄຟ ເอາຕ໌ພຸຕໄມ່ຕັດ	 เป็นได้ทั้งปัญหาซอฟแวร์และปัญหาด้านฮาร์ดแวร์ อาจลืมใช้คำสั่ง pinMode() หรือใช้ไม่ ดูกต้อง ก่อนเรียกใช้ digitalWrite() ใช้คำสั่ง digitalWrite() พิดขา ESP32 รีเซ็ตก่อนทำงานกึงคำสั่ง digitalWrite() (ให้เปิด Serial Monitor ขึ้นมาดู) บอร์ด IOXESP32+ หลวม ทำให้ไฟฟ้า ไม่สามารถไหลได้ กระแสไฟฟ้าจากแหล่งจ่ายไม่เพียงพอให้ อุปกรณ์ทำงานได้ปกติ 	
ไฟติด-ดับ แต่ไม่มีเสียวรีเลย์ตัด-ต่อ	• รีเลย์เสีย	
ปัญหาอินพุตดิจิทัล		
ใช้คำสั่ว digitalRead() ได้ค่าเป็น 1 หรือเป็น 0 ตลอดเวลา	 ให้สัมเกตไฟตรมจุดเอาต์พุต หากต่อวมจร ให้ต้อมเป็น 1/0 แต่ไฟไม่ติด-ไม่ดับ เป็น ปัญหาด้านฮาร์ดแวร์หรือระบบไฟฟ้า ให้ ใช้มัลติมิเตอร์ตรวจสอบแรมดันแต่ละจุด หากไฟติด-ดับปกติ ให้ตรวจสอบโค้ด โปรแกรมว่าอ่านออกมากูกขา ตรวจสอบว่าใช้คำสั่ม pinMode() ก่อน ใช้คำสั่ม digitalRead() แล้ว 	

ปัญหาอินพุตแอนะล็อก	
วัดแรมดันได้สูมสุด 2V กว่า ๆ แม้จะป้อนแรมดัน	เกิดจากไม่ได้จ่ายไฟเข้า VIN 7V ถึม 12V วมจร
มากกว่านี้	อินพุตแอนะล็อกใช้ไฟจาก VIN ในการทำมาน หาก
	ไม่จ่ายไฟ ค่าที่วัดได้จะไม่ดูกต้อม
ວັດແຮງດັບໄດ້ໄມ່ຕຣງ	เป็นปัญหาในระดับชิป ให้ใช้ไลบารี่
	ESP32AnalogRead อ่านแรมดันแทน าะให้ค่าที่
	ตรมความเป็นาริมมากขึ้น
ช่อม I ² C	
ติดต่อกับอุปกรณ์ I²C ไม่ได้	สัมเกตไฟช่อม I²C ว่า∩ระพรับหรือไม่ หา∩
	กระพริบแสดงว่ามีการส่งข้อมูลออกจากบอร์ด
	แล้ว แต่อุปกรณ์ปลายทามอาจไม่ได้รับ หรือไม่
	ทำงาน หากไฟไม่กระพริบ แสดงว่าไม่มีข้อมูล
	ส่งออกจากบอร์ด ให้ตรวจสอบโค้ดโปรแกรม
ช่อม RS485	
ติดต่อกับอุปกรณ์ RS485 ไม่ได้	สัมเ∩ตไฟช่อม RS485 ตรม TX ว่า∩ระพริบ
	หรือไม่ หากกระพริบแสดงว่ามีการส่งข้อมูลออก
	จากบอร์ดแล้ว จากนั้นให้สัมเกตไฟ RX ว่าทำมาน
	อย่ามไร
	 ไฟ RX กระพริบ แสดงว่าอุปกรณ์
	ปลายทางส่งข้อมูลเข้ามาแล้ว แต่ฝั่ง
	Farm1 รับข้อมูลไม่ได้ ให้ตรวาสอบโค้ด
	โปรแกรม
	 ไฟ RX ไม่กระพริบ แสดงว่าอุปกรณ์
	ปลายทามไม่ตอบสนอม อาจเป็นไปได้ว่า
	หมายเลข ID ขอวอุปกรณ์ที่ร้อวขอข้อมูล
	ไม่มีอยู่ หรือ ID ขอวอุปกรณ์พิด ให้ใช้
	โปรแกรม CAS Modbus Scanner ลอง
	สแกนหา ID ดูก่อน รวมทั้งอาจ
	ตรวาสอบการตั้งค่า Band Rate และ

	Prarity ด้วย ว่าตั้งค่าไว้ตรงกับที่	
	อุปกรณ์ต้องการหรือไม่	
	หากไฟ TX ไม่กระพริบ	
	 ยังส่งข้อมูลออกไม่ได้ ให้ตรวาสอบโค้ด 	
	โปรแกรม	
ปัญหาวมารนับเวลา		
เวลาไม่ดูกต้องหลังตัดไฟ	ไม่ได้ใส่แบตเตอรี่ หรือแบตเตอรี่หมด	

บริษัท อาร์ทรอน ชอป จำกัด รับพัฒนาสินค้าอิเล็กทรอนิกส์ บอร์ดอิเล็กทรอนิกส์ ด้านระบบ IoT พัฒนาเว็บไซต์ระบบ IoT ด้วย ReactJS / Next.js รับทำระบบหลัวบ้านให้อุปกรณ์ IoT รับเขียนเฟิร์ม แวร์อุปกรณ์ IoT ด้วย Ardvino IDE / PlatformIO / Atmel Studio / MPLAB IDE / STM32CubeIDE / IAR / ESP-IDF / Arm Keil รับจัดหาชั้นส่วนอิเล็กทรอนิกส์ ออกใบเสนอราคา และใบกำกับภาษีได้

ติดต่อสอบกามข้อมูลเพิ่มเติม

- เว็บไซต์ <u>www.artronshop.co.th</u>
- โทร: 02 003 3688 (สำนักงาน)
- อีเมล: contact@atronshop.co.th
- LINE: @artronshop
- Facebook: <u>ArtronShop</u>
- Youtube: <u>ArtronShop</u>

