Polycarbon wind direction transmitter (Model 485)

Table of contents

Chapter 1 introduction

1.1 product overview

1.2 functional features

1.3 main parameters

1.4 system diagram

Chapter 2 hardware connectivity

2.1 equipment pre-installation inspection

2.2

2.2.1 sensor wiring

2.3

2.4 precautions

Chapter 3 configuration software installation and use

- 3.1 the sensors are connected to the computer
- 3.2 use of sensor monitoring software
- Chapter 4 communication protocols
 - 4.1 basic communication parameters
 - 4.2 data frame format definition
 - 4.3 register address
 - 4.4 numeric values correspond to conversion relationships
 - 4.5 examples and explanations of communication protocols

Chapter 5 common problems and solutions

Chapter 1 product introduction

1.1 product overview

The wind direction sensor is compact and light in appearance, easy to carry and assemble, the three-cup design concept can effectively obtain external environmental information, the shell is made of polycarbonate composite material, and the exterior is treated by electroplating and plastic spraying, it has good anti-corrosion, anti-corrosion and other characteristics, can ensure the long-term use of the instrument without rust, and with the internal smooth bearing system to ensure the accuracy of information collection. It is widely used in greenhouse, environmental protection, weather stations, ships, docks, aquaculture and other environmental wind direction measurement.

1.2 functional characteristics

Range: 8 directions

Anti-electromagnetic interference treatment

Adopt high-performance imported bearings, small rotational resistance, accurate

measurement

Polycarbonate shell, mechanical strength, high hardness, corrosion resistance, non-rust can be used outdoors for a long time

The structure and weight of the equipment are carefully designed and distributed, with small moment of inertia and sensitive response

Standard Modbus-rtu communication protocol, easy access

DC power supply (default)	10-30 V DC		
Power consumption	≤0.15 W		
Transmitter circuit	-40 ° C ~ + 60 ° C 0% RH ~ 80% Rh		
operating temperature	-40° C ~ $+00^{\circ}$ C, 070 KH ~ 0070 KH		
	485 communication (Modbus) protocol		
Communication interface	Baud rate: 2,400,4,800(default), 9,600		
	Data bit length: 8 bits		
	Parity: None		
	Stop bit length: 1 bit		
	Default Modbus address: 1		
	Support function code: 03		
Parameter setting	Configure with the provided configuration software		
T arameter setting	through the 485 interface		
Measurement range	Eight directions		
Dynamic response speed	peed ≤0.5 s		

1.3 main parameters

Shell dimensions

1.4 system framework diagram 单接

The product can also be used in a combination of multiple sensors in a 485 bus,

in theory a bus can be 254485 sensors, the other end with a 485 interface PLC, 485 interface chip connected with the MCU, or use USB to 485 can be connected to the computer, the use of my company's sensor configuration tools for configuration and testing (use the configuration software can only be connected to one device).

多接

Chapter 2 hardware connectivity 2.1 equipment pre-installation inspection

Equipment list:

| transmitter equipment 1

| install 4 screws

I Certificate of Conformity and Warranty Card

2.2

Wide voltage input 10-30V. 485 signal line wiring attention to a B two lines can not be connected back, the bus address between multiple devices can not conflict.

2.2.1 sensor wiring

	Color	Description		
电	Brown	Power supply positive (10		
源		~ 30V DC)		
	Black	The power supply is		
		negative		
通	Yellow (green)	485-A		
信	Blue	485-B		

2.3 installation

The lower pipe of the wind direction sensor is firmly fixed on the flange plate by means of flange installation and threaded flange connection. The chassis ø80mm is provided with four mounting holes of ø4.5 mm in the circumference of the ø68mm, use Bolts to fasten it on the bracket, so that the whole set of instruments, to maintain the best level, to ensure the accuracy of wind direction data, flange connection easy to use, can withstand greater pressure.

2.4 precautions

1. Users are not allowed to disassemble or touch the sensor core to prevent damage to the product.

2. As far as possible away from high-power interference equipment, so as not to cause inaccurate measurement, such as inverter, motor, etc. .

3. To prevent chemical reagents, oil, dust and other direct damage to the sensor, do

not dew, limit temperature environment for long-term use, prevent cold and heat shock.

Chapter 3 configuration software installation and use

We provide the supporting 485 parameter configuration software, can easily use the computer to read the parameters of the sensor, while flexible modification of the sensor device ID and address.

Note that when using software for automatic access, you need to ensure that there is only one sensor on the 485 bus.

3.1 the sensor is connected to the computer

After connecting the sensor to the 485 via USB and powering it properly, you can see the correct COM port on your computer (see the COM port in my pc-properties-device manager-port).

Open the package, select"Debugging software"-"485 parameter configuration software", find to open.

If you do not find a COM port in device manager, it means that you do not have a USB to 485 driver installed (in the package) or you do not have the driver installed correctly, please contact a technical person for help.

3.2 use of sensor monitoring software

Configuration interface as shown in the figure, first according to Section 3.1 method

to get the serial port number and select the correct serial port.

Click on the test baud rate of the software, the software will test the current device

baud rate and address, the default baud rate is 4800 bit/s, the default address is 0x01.

3. Change the address and baud rate as needed, and query the current function status of the device.

If the test is not successful, please re-check the equipment wiring and 485 driver installation.

2 485变送器配置软件V2.1		
请选择串口号: COM4 🔽	测试波特率	
设备地址: 1	查询	— 设置
设备波特率: 4800	查询	设置
温度值:	查询	
湿度值:	查询	
水浸状态:	查询	
断电状态:	查询	
光照度测试结果	X	新 教设定
CO		
遥信输出延时 设备地址:1 波	资特率:4800	设置
遥信常开常闭设置		设置
湿度上降	确定	设置
湿度下		设置
温度上限:	查询	设置
温度下限:	查询	设置
湿度回差:	查询	设置
温度回差:	查询	设置
湿度偏差:		
温度偏差:	查询	
液晶控制模式:	液晶控制模式设	2番
无线温湿度变送器参数设置:	无线参数设置	

Chapter 4 communication protocols

4.1 basic communication parameters

Coding	8-bit binary
Data bits	Eight
Parity bit	无
Stop bit	1 bit
Error	CRC (redundant cyclic code)
checking	erce (redundant cyclic code)
Doud rate	2400 bit/s, 4800 bit/s, 9600 bit/s can be set, the factory default is
Dauu Tale	4800 bit/s

4.2 data frame format definition

Using the ModBus-RTU protocol, the format is as follows:

Initial structure \geq 4 bytes in time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error Check = 16-bit CRC code

Time to end structure \geq 4 bytes

Address Code: the address of the transmitter, in the communication network is unique (factory default 0x01).

Function code: this transmitter only uses the function code 0x03(reads register data).

Data area: Data area is specific communication data, note that 16bits data high byte in front!

CRC code: two-byte checksum code.

Host query frame structure:

Address	Function	Register start	Register	Low	High checksum
Code	codes	address	length	checksum	
1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte

Slave response frame structure:

Address Code	Function codes	The number of valid bytes	Data Area 1	The second data area	N data area	Check Code
1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes

4.3 register address

Register address	PLC or configuration address	Content	Operation
000h	40001	Wind direction (0-7 Gear) Uploading the data is the true value	Read only
001h	40002	Wind direction (0-360 °) Uploading the data is the true value	Read only

4.4 numeric values correspond to conversion relationships

Collection values (0-7	Acquisition Values (0-360	Direction
files)	°)	
0	0 °	North Wind

1	45 degrees A northeasterly win	
2	90 degrees East Wind	
3	135 degrees Southeast wind	
4	180 °	South wind
5	225 degrees	Southwest wind
6	270 degrees	West Wind
7	315 degrees	Northwest wind

4.5 communication protocol examples and explanations Example: wind direction reading device address 0x01

Query frame:

Address Code	Function codes	Starting address	Data Length	Low checksum	High checksu m
0x01	0x03	0x000x00	0x000x02	0xC4	0x0B

Response Frame: (for example, read wind direction value (0-7 stops) is 2, (0-360 °) is 90 °)

	_	Returns the	Wind	Wind		High
Address	Functi	number of	direction	direction	Low	checks
Code	OII	valid bytes	(0-7	(0-360	checksum	um
	codes		Gear)	°)		
0x01	0x03	0x04	0x000x02	0x000x5a	0xDB	0xC8

Wind direction:

(range 0-7) : 0002H (hexadecimal) = 2 = > wind direction = easterly

 $(0-360^{\circ}): 005$ AH -LRB-hexadecimal) = 90 = > wind directioEasteWindwind

Chapter 5 common problems and solutions No output or output errors

Possible reasons:

- 1. The computer has a com port and the port chosen is incorrect.
- 2. Baud rate error.

The 485 bus is disconnected, or the A and B wires are switched back.

4. If the number of equipment is too large or the wiring is too long, the local power supply should be added with 485 enhancer and 120Ω terminal resistance.

The USB 485 drive is not installed or damaged.

6. Equipment damage.